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The enteroendocrine system

The enteroendocrine system is the primary sensor of ingested
food and is responsible for secreting an array of gut hormones,
which act in concert to modulate multiple physiological respons-
es including gastrointestinal motility and secretion, glucose
homeostasis, and appetite (Figure 1). An impressive number of
gut hormones has been implicated in these processes including
cholecystokinin (CCK), glucagon-like peptide 1 (GLP1), glucose-
dependent insulinotropic peptide (GIP), peptide YY (PYY), soma-
tostatin, ghrelin, and serotonin (5-hydroxytryptamine [5-HT]).
While the discovery of these hormones dates back to the 1970s
and 1980s, they have returned to the spotlight following the asso-
ciation of some with the dramatic weight loss and diabetes remis-
sion observed as a consequence of bariatric surgery (1).

The enteroendocrine system forms the largest endocrine
organ in the body and plays a vital role in the regulation of post-
prandial physiology, yet its intricate workings remain shrouded
in mystery. This can be partly attributed to the elusive nature
of enteroendocrine cell (EEC) populations, which collectively
account for just 1% of intestinal epithelial cells. However, the field
has made significant advances in recent years owing largely to the
engineering of transgenic mice in which the expression of fluores-
cent proteins is driven by enteroendocrine hormone promoters
(2-5). The use of this technology has shed light on several novel
aspects of EEC biology and has challenged traditional concepts
in the field. One such dogma was the notion that EECs belong to
distinct cell types such as the GLP1- and PYY-secreting L cells,
CCK-secreting I cells, and GIP-secreting K cells. Surprisingly, fol-
lowing characterization of proglucagon-Venus, GIP-Venus (6),
and CCK-eGFP (7) reporter mice, it is now clear that individual
EECs, particularly in the small intestine, are capable of expressing
a much broader range of gut hormone precursors, opening up the
exciting possibility of therapeutically manipulating not only levels
of endogenous gut hormone secretion but also EEC type and num-
ber (reviewed in ref. 8). Despite the rejection of the “one cell type,
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secretion, including the interaction between the enteroendocrine system and the enteric nervous system. It is hoped

that a deeper understanding of how these systems collectively regulate postprandial physiology will further facilitate the

one hormone” hypothesis, gut hormones exhibit characteristic
patterns of expression along the gastrointestinal tract. While some
interspecies differences do exist, GIP is typically found at higher
levels in the duodenum, CCK in the duodenum and jejunum, and
GLP1 in the jejunum, ileum, and colon. PYY, on the other hand,
is predominantly expressed in the distal ileum and colon (9, 10).

An additional rich source of EECs is the stomach. Examples
of gastric hormone-producing cells include chief cells and P
cells, which produce leptin (11-13); D cells and G cells, which
release somatostatin and gastrin, respectively (14, 15); and A cells
(X-like), which secrete ghrelin, an appetite-stimulating hormone
with additional roles in energy storage and glucose homeostasis
(16-18). The actions and importance of intestinal leptin, which
is secreted in response to food intake (11), are currently an active
area of research (19). Until recently ghrelin, and possibly motilin,
were thought to be the only orexigenic gut hormones. However,
a recent study identified insulin-like 5 (INSL5) as an additional
orexigenic gut peptide, produced by colonic L cells in response to
caloric restriction. INSL5 is thought to increase food intake by act-
ing on the relaxin family peptide receptor (RXFP4) (20).

EECs are found scattered along the gastrointestinal epithe-
lium, and most exhibit the characteristic “open-type” structure,
with a narrow apical surface facing the gut lumen and a broader
basolateral surface from which dense-core secretory vesicles are
exocytosed (21). A notable exception is the “closed-type” ghrelin-
secreting cell that does not come into contact with the gastric
lumen (16). Basolaterally released gut hormones activate enteric,
vagal, and spinal sensory neurons via their respective receptors or
enter the circulation to act in an endocrine fashion. Once in the
subepithelial space, gut hormones can also signal in a paracrine
manner to neighboring epithelial cells. A well-characterized
example is the activation of PYY Y1 receptors located on entero-
cytes, which leads to the inhibition of cAMP-dependent Cl- secre-
tion (22). EECs often possess dendrite-like processes, which are
thought to serve paracrine and sensory functions (23). Indeed,
the recent employment of a PYY-GFP transgenic mouse line in
conjunction with high-resolution confocal microscopy revealed a
novel feature of EEC morphology: a prominent basal cytoplasmic
process, referred to as a “neuropod,” possessing axon-like traits



The Journal of Clinical Investigation

Food
intake
Gut
lumen
Gut |
fj g
}' — "'-'._5:. g
y Digested =
( nutrients &2
:\ Q

Glucose
Fatty acids
Amino acids
Monoacylglycerols
Oligopeptides

EECs

Enterocytes

o' o 2 Guthormones o o Y
@ secreted into @
9 bloodstream

Y
Gut secretions
Gut motility
Food intake
Insulin release
Nutrient utilization

[*]

including a putative physical interaction with glial fibrillary acidic
protein-expressing enteric glia (2, 24). While the functional role of
the neuropod structure remains to be determined, the possibility
of discovering novel cell-to-cell interactions that modulate EEC
secretion or action opens exciting avenues for future investigation.

EECs are directly activated by their exposure to nutrients
arriving in the gut lumen, and the consequent secretion of gut
hormones serves as a physiological signal to alert the body to the
arrival of absorbed nutrients. Detection of the luminal contents
has been attributed to the presence on EECs of sensory trans-
porters and receptors, as well as to the utilization of nutrients by
EECs as energy substrates. Surrounding enterocytes may also
release active metabolites or deliver stimuli to the sub-epithelial
space following their absorption across the epithelium. Indeed,
for most nutrient-sensing receptors it remains unclear whether
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Figure 1. Nutrient sensing by the enteroendocrine system. Ingested
food is digested into its nutrient components in the lumen of the small
intestine. The small intestinal epithelium is arranged in villi containing,
among other cell types, absorptive enterocytes and EECs. The presence of
nutrients in the gut lumen stimulates EECs and triggers the secretion of
gut hormones, which orchestrate the body’s postprandial response. Gut
hormones modulate multiple physiological processes including gastroin-
testinal secretion and motility, insulin release, and satiety.

they are predominantly located on the apical or basolateral sur-
face of EECs. This Review focuses on the mechanisms underpin-
ning nutrient and non-nutrient chemosensing, with a focus on the
release of the incretins GLP1 and GIP, which act on pancreatic
B cells to enhance glucose-stimulated insulin secretion.

Molecular mechanisms underlying

gut chemosensing

Nutrient sensing. Investigation into enteroendocrine nutrient-
sensing pathways has gained momentum in recent years, particu-
larly in vitro. A large number of GPCRs have been identified as
EEC nutrient sensors, and a growing body of evidence suggests
that primary L cells are electrically active, generating nutrient
responses characterized by action potential firing and voltage-
gated calcium influx (5, 25).

Carbohydrates. Carbohydrates are predominantly sensed in
the form of glucose. In humans, glucose is a potent stimulator of
GLP1 and GIP secretion, though it is less consistent at triggering a
rise in plasma CCK (26-28). A number of mechanisms for glucose-
stimulated incretin release have been proposed (Figure 2A), and
there has been a lively debate regarding the contribution made
by the luminal presence of glucose and its uptake/absorption or
metabolism. The mechanism for which there is the most support is
Na*-coupled glucose uptake via the sodium/glucose cotransport-
er member 1 (SGLT1). An important role for absorption and the
requirement for luminal Na* ions in glucose-stimulated gut hor-
mone secretion were determined in earlier studies, which demon-
strated that GLP1 and GIP secretion was mediated by both metab-
olizable and non-metabolizable substrates of SGLT1 (29-31).
Recent evidence suggests that small transporter-triggered cur-
rents stimulate membrane depolarization and voltage-gated
Ca? entry (5, 32). Glucose-stimulated GLP1 and GIP secretion in
vitro is prevented by pharmacological inhibition of SGLT1 (33),
and Sgltl-deficient mice exhibit impaired GLP1 and GIP secre-
tion immediately following oral glucose administration (34). At
later time points after glucose gavage, plasma GLP1 was para-
doxically increased in Sglt1 knockout mice (35), perhaps because
reduced glucose absorption in the upper small intestine results in
increased nutrient delivery to the L cell-rich distal gut, where an
SGLT1-independent pathway may play a more important role.

L and K cells also express glucokinase and ATP-sensitive
potassium (K,,,) channel subunits, and a potential role for glu-
cose metabolism was suggested by in vitro experiments using the
model cell line GLUTag (33). However, metabolism-dependent
pathways are not thought to be responsible for peak GLP1 and
GIP concentrations measured early after an oral glucose load, and
incretin levels in humans were not affected by treatment with K,
channel blockers (36). Changes in plasma glucose have little effect
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on plasma incretin levels (33), although small GLP1 responses trig-
gered by oral fructose might be attributable to metabolism (37),
as apical fructose uptake is mediated by a non-electrogenic trans-
porter GLUTS5. Overall, our current understanding of the sensory
importance of EEC metabolism remains limited.

Activation of the sweet taste receptor, a G-protein-coupled
heterodimer (T1R2/T1R3) that senses glucose and artificial sweet-
eners, has also been proposed to stimulate gut hormone secretion.
This hypothesis was driven by studies that detected sweet taste
receptor machinery, such as the G-protein o-gustducin, in the
gut, some of which also demonstrated co-localization with GLP1
and GIP (38-40). Whereas a-gustducin (38) and T1r3 knockout
mice (41) exhibited impaired glucose-stimulated GLP1 secretion,
glucose homeostasis in T1r2-deficient mice was normal (41), and
there is currently insufficient evidence to support direct sensing
of sweet taste by K or L cells (5). In addition, several studies have
concluded that the ingestion of glucose, but not artificial sweeten-
ers, increases plasma GLP1 and GIP levels in rats (42) and humans
(43), findings which at present argue against an important role for
sweet taste detection in gut hormone secretion.

Proteins. Dietary protein is a potent stimulus of CCK release
and also stimulates secretion of GLP1 and GIP, although with
some inconsistencies between different reports. High-protein
meals are associated with markedly increased plasma PYY levels
and enhanced satiety (44). However, the mechanisms underly-
ing protein-induced gut hormone secretion are relatively poor-
ly understood, and the optimal size of the products of protein
digestion for maximal stimulation of gut hormone release has
yet to be established. It is clear that amino acids as well as pep-
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Figure 2. Glucose, fat, and amino acid sensing
by EECs. (A) Glucose sensing by EECs involves

a number of mechanisms. A critical component
of glucose sensing in the gut is Na*-coupled
glucose uptake by SGLT1, which generates small
currents that trigger depolarization and voltage-
gated Ca** entry. Glucose metabolism, involving
glucokinase and the closure of ATP-sensitive
(Km) channels, and basolateral/plasma glucose
concentration may also play a role in glucose-
stimulated gut hormone release. (B) There are
several pathways by which fatty acids and amino
acids are sensed by EECs. Fatty acids activate
nutrient-sensing GPCRs, which include FFAR1
(GPR40) and FFAR4 (GPR120) for MCFAs and
LCFAs and FFAR2 (GPR43) for SCFAs, leading

to anincrease in intracellular Ca%. Activation of
GPR119 by oleoylethanolamide and monoacyl
glycerols stimulates gut hormone secretion via
an increase in intracellular cAMP. Similarly, amino
acids and oligopeptides can also activate GPCRs
such as the CaSR. In addition, electrogenic
uptake of certain amino acids and dipeptides and
tripeptides can also trigger membrane depolar-
ization and gut hormone release.

LCFA

= Aromatic aa,
oligopeptides

-=-Oleoylethanolamide,
monoacylglycerols

tides of varying sizes are capable of activating EECs, implying
the existence of multiple sensory pathways (Figure 2B). Several
amino acids have been demonstrated to stimulate GLP1 secre-
tion in vitro (25, 45). The L-glutamine-triggered GLP1 pathway is
perhaps one of the best characterized and is thought to involve L
cell membrane depolarization through electrogenic Na*-depen-
dent transport, as well as elevation of cAMP (25, 45). In humans,
ingestion of L-glutamine raises plasma GLP1 levels in healthy,
obese, and diabetic subjects (46). Amino acid-stimulated gut
hormone secretion has been associated with activation of the
primarily G -coupled calcium-sensing receptor (CaSR) (47). The
CaSR is best known for its role in sensing extracellular Ca*, but
is also expressed in EECs, where it is gaining a reputation as an
amino acid sensor (47-49). Additional candidates for mediating
GLP1release in response to amino acids include the umami taste
receptor dimer T1R1/T1R3 (50) and GPRC6A (51).

The mechanisms involved in the sensing of larger protein
digestion products, such as di- and tripeptides and oligopeptides,
are less clear. Meat hydrolysate has been demonstrated to trigger
GLP1 release from vascularly perfused rat small intestine, STC-1
cells (a small intestine enteroendocrine murine cell line) (52), and
NCI-H716 cells (derived from human colorectal adenocarcinoma)
(53), as well as CCK release from I cells (54). The sensing of these
larger protein digestion products has been linked to the activation
of MAPKs (52, 53) and the activity of the brush border H*-coupled
transporter of dipeptides and tripeptides, peptide transporter 1
(PEPT1) (54, 55). Both PEPT1- and CaSR-dependent pathways
were recently implicated in the sensing of peptones and dipeptides
and tripeptides by primary L cells (56). Another receptor, lyso-
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phosphatidic acid receptor 5 (LPARS5, also known as GPR92/93),
was reported to mediate peptone-stimulated CCK release in
Lpar5-overexpressing STC-1 cells (57), although its expression is
not enriched in native I cells (49) or L cells (56). As GLP1 secre-
tion was found not to be impaired in primary colonic cultures from
Lpar5 knockout mice (56), further work is required to elucidate
what role, if any, LPARS5 plays in intestinal chemosensing.

Lipids. The ingestion of fat, which is subsequently hydrolyzed
by lipases in the small intestine, is a strong stimulus of gut hor-
mone secretion (58-60). Several GPCRs have been identified
as sensors of the products of fat digestion (Figure 2B). In EECs,
these include GPR120 (FFAR4) (61), GPR119 (62, 63), and FFAR1
(GPR40) (64). GPR120 and FFARI respond to unsaturated long-
chain fatty acids (LCFAs) and medium-chain fatty acids (MCFAs),
and both are thought to couple to G_-proteins and thus activate
phospholipase C, leading to IP,-mediated Ca** release from intra-
cellular stores (61, 65). GPR120 and FFARI expression is largely
restricted to EECs in the intestinal epithelium, including I, L, and K
cells (3-5), and a role in gut hormone secretion for these receptors
has been demonstrated in murine and human colonic cultures and
in vivo (61, 66). Mice lacking FFARI exhibited impaired release
of GIP and GLP1 on a high-fat diet (64), and LCFA-induced CCK
release from ffarl-deficient I cells was compromised (3). It is cur-
rently unclear which of these two receptors plays a more important
role in intestinal lipid sensing. Interestingly, recent work revealed
that ghrelin cells express GPR120, which is linked to inhibition of
secretion from primary gastric mucosal cultures (48).

Gpr119 mRNA is enriched in K and L cells (4, 5, 62) and is
thought to be activated by oleoylethanolamide and 2-monoacyl-
glycerols, which are derived from triglycerides (67). GPR119 is a
G_-coupled GPCR-activating adenylyl cyclase that increases intra-
cellular cAMP levels (62, 68, 69). cAMP is a well-documented trig-
ger for gut hormone secretion and gene transcription via pathways
coupled to the recruitment of protein kinase A and EPAC2 (70-72).
Pharmacological activation of GPR119 using synthetic small-
molecule agonists increased both plasma GLP1 and GIP con-
centrations in mice (62). Oral administration of 2-oleoylglycerol
increased plasma GLP1 and GIP levels in humans (67), however, a
GPR119 agonist failed to stimulate GLP1 and PYY secretion from
human colonic cultures (66), and the efficacy of GPR119 agonists
in clinical trials has been underwhelming (73).

Alternative lipid-sensing pathways have also been implicated
in EECs. These include contributions from fatty acid transporter,
member 4 (74), activation of atypical PKC( (75), and indirect stim-
ulation by chylomicrons and other lipoproteins released by neigh-
boring enterocytes. In support of the latter hypothesis, adminis-
tration of the hydrophobic surfactant and inhibitor of intestinal
chylomicron formation Pluronic L-81 (76) led to reduced lipid-
induced GIP secretion in mice (77) and rats (78), and in I cells, the
regulation of CCK release by fatty acids was lipoprotein depen-
dent and was attributed to activation of immunoglobulin-like
domain containing receptor 1 (79). Mice lacking monoacylglycer-
ol acyltransferase 2 or diacylglycerol acyltransferase 1 (DGAT1),
enzymes that sequentially resynthesize triglycerides to be incor-
porated into chylomicrons, also exhibited impaired GIP release in
response to an oral triglyceride load. By contrast, enhanced GLP1
and PYY responses were observed in Dgatl-deficient mice (80),
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and following inhibition of microsomal triglyceride transfer pro-
tein in rats on a high-fat diet background (81). It thus now seems
almost certain that lipid ingestion activates a multitude of senso-
ry pathways in EECs, and further work will be required to dissect
the relative physiological importance and translation potential of
individual components.

Sensing of non-nutrient stimuli

EECs sense a variety of non-nutrient luminal and paracrine
signals. These include inflammatory cytokines, enteral proges-
terone (82), and bile acids (BAs) as well as gut hormones and
enteric neurotransmitters.

A number of studies identified IL-6 as a cytokine poten-
tially involved in the modulation of glucose homeostasis (83, 84).
Increased IL-6 levels observed during exercise coincided with
increased concentrations of plasma GLP1 (85, 86). Recent work has
revealed that the IL-6 receptor is expressed in GLUTag cells and
incubation with IL-6 increases both GLP1 production and secretion
in these cells (87). Elevated IL-6 levels might, therefore, contribute
to the increased GLP1 concentrations observed during exercise.

BAs play a critical role in the emulsification and digestion of
lipids and are believed to act as non-nutrient stimuli of L cells. In
humans, administration of BAs has been associated with increased
plasma GLP1 levels and improved glucose homeostasis (88, 89).
The increased plasma BAs and enhanced BA delivery to the distal
gut observed following gastric bypass surgery may contribute to
the elevated GLP1 and PYY levels associated with gut rearrange-
ment procedures (90, 91). BAs are thought to stimulate GLP1
release via activation of the predominantly G _-coupled receptor
GPBARI (also known as TGR5), which is enriched in L cells, par-
ticularly in the distal intestine (92, 93).

Gut hormone secretion from EECs is also under the influence
of signals from other EEC populations, such as somatostatin aris-
ing from intestinal D cells (14). In the stomach, somatostatin is an
important regulator of gastrin secretion from neighboring G cells
(15), whereas in the intestine it likely acts over greater distances as
a paracrine and/or hormonal factor. Five somatostatin receptors
(SSTRs) have been identified, all thought to be G,-coupled, lead-
ing to inhibition of adenylyl cyclase and a reduction in intracellu-
lar cAMP levels. In GLUTag and primary L cells, somatostatin is
believed to inhibit GLP1 and PYY release via SSTR5 (94). Ghrelin
secretion is also inhibited by somatostatin, potentially involving
SSTR1, -2, and -3 (48). The effects of other gut hormones on ghre-
lin release are varied (95-97). GIP, for example, has been reported
as both an inhibitor and stimulator of ghrelin secretion. The recent
identification in ghrelin cells of the GIP receptor, which is predom-
inantly G_coupled, would suggest that any direct action of GIP on
ghrelin cells is likely to be stimulatory (48) and that any inhibitory
effects observed in situ might occur via indirect pathways.

Gut microbiota, host defense, and EEC signaling

The mammalian large intestine harbors more than 1,000 differ-
ent species of bacteria, collectively known as the gut microbiota.
In recent years gut microbiota have been increasingly recognized
as a fundamental component of host metabolism, and shifts in
bacterial populations have been associated with endocrine disor-
ders such as obesity and type 2 diabetes (98-101). Gut microbiota
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release a large variety of metabolites that potentially interact with
EECs located in the distal intestinal epithelium.

Short-chain fatty acids (SCFAs), including acetate, propio-
nate, and butyrate, are the major end products of microbial fer-
mentation of non-digestible carbohydrates and have received
considerable attention as key candidates for microbiota-host sig-
naling. They have been identified as ligands for two GPCRs, free
fatty acid receptor 2 (FFAR2, previously known as GPR43) and
FFAR3 (previously known as GPR41) (102, 103), both of which
are detectable in rat and human colonic mucosa (104-106) and in
murine L cells (106-108). FFAR2 couples to G, and G, pathways,
whereas FFAR3 is presumed to couple exclusively to the pertus-
sis toxin-sensitive G, pathway (102, 103). Both receptors have also
been demonstrated to activate MAPK (103, 109), which has been
associated with GLP1 release from EEC cell lines in response to a
number of stimuli (82, 110). SCFA-dependent GLP1 secretion was
significantly impaired in Ffar2 knockout mice, which also exhib-
ited reduced circulating GLP1 concentrations, supporting a role
for FFAR?2 signaling in GLP1 secretion (108, 111).

Interestingly, Ffar2/3 mRNA appears also to be enriched in
small intestinal I cells and gastric ghrelin cells (48, 112). In contrast
to the effects on L cells, FFAR2 agonists inhibit ghrelin secretion via
G,-coupled mechanism. Engelsoft and colleagues hypothesized that
this shift toward G, coupling may result from the high expression
and enrichment of non-classical G, subunits in ghrelin cells (48).

In addition to SCFAs, gut bacteria contribute a vast array of het-
erogeneous metabolites including secondary BAs, phenols, choline
metabolites, indole derivatives, vitamins, neurotransmitters and
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Figure 3. Neuroendocrine crosstalk in the gut. The secretion of gut hor-
mones from EECs is stimulated by the sensing of luminal factors (i), (e.g.,
nutrients, bile acids, microbial products) predominantly via apical GPRCs
(G,/G,) and transporters. Gut hormones secreted into the subepithelial
space mediate their local and systemic effects via a number of signal-

ing pathways. These include absorption into the circulation to act in the
classical (i) endocrine manner; (iii) paracrine signaling involving activa-
tion of surface receptors (e.g. NPY1R on enterocytes; SSTR5 on L cells;
immunoglobulin-like domain containing receptor 1 [ILDR1] on | cells) on
the basolateral surface of neighboring enterocytes and/or other EECs (iv);
and activation of GPCRs (e.g. GLP1R, NPY2R, CCK1R) on vagal afferents (v)
to relay information centrally, or on enteric neurons to modulate intestinal
function. Enteric neurons are also capable of sensing certain absorbed
nutrients directly (vi). For example, subsets of enteric neurons express the
SCFA receptor FFAR3. In turn, the ENS fine-tunes the function of EECs
(vii), as evident from their expression of a number of neuropeptide recep-
tors (e.g., galanin receptor [GALR1], bombesin receptors [BB2R], vasoactive
intestinal peptide receptor 1 [VPACIR]).

neurotransmitter precursors, and bioactive lipids (113,114). Indeed,
microbiota-derived indole, produced by bacterial degradation of
dietary tryptophan, has recently been shown to exert dual effects
on GLP1 release — a stimulatory action mediated by voltage-gated
K*channel blockade and an inhibitory effect caused by suppression
of mitochondrial metabolism (115). However, our understanding
of how the complex “soup” of bacterial metabolites interacts with
host cells, including EECs, is currently in its infancy, and further
work is required to determine the impact of this crosstalk in differ-
ent endocrine and/or intestinal disease states.

Beyond its capacity as an endocrine organ, the intestinal epi-
thelium forms a barrier between the internal environment and
external factors and plays a key role in the orchestration of host
defense mechanisms. The involvement of EECs in these processes
takes a variety of forms. A key gut hormone that has been impli-
cated is GLP2, which has established effects on mucosal defense
and gut barrier function as well as mucosal growth and absorptive
capacity (116). EECs sense inflammatory mediators, such as inter-
leukins, and are also capable of detecting bacterial antigens. It is
now known that 5-HT-secreting enterochromaffin cells and EEC
lines (such as LCC-18) express TLRs (117-119). Stimulation of TLRs
in intestinal epithelial cells induces the activation of NF-xB and
the release of inflammatory cytokines and antimicrobial peptides
(120, 121). 5-HT is known to have emetic properties, and therefore
activation of TLRs on enterochromaffin cells could protect against
toxic substances. CCK-expressing cell lines were shown to respond
to activation with TLR agonists such as bacterial LPS by secreting
CCK and stimulating production of inflammatory cytokines, which
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activate innate and adaptive immune responses (118, 119). Oral
administration of LPS and other TLR agonists elevated serum CCK
levels in mice (118). Interestingly, gastrointestinal infection is asso-
ciated with elevated CCK levels, which is thought to account for the
commonly experienced reduction in food intake (122).

Enteroendocrine system and enteric nervous
system crosstalk

Enteric nervous system influence on gut hormone release. Gut hor-
mone secretion is known to be under a certain degree of neuro-
hormonal control, and it has been postulated that these signals
may be involved in crosstalk between different regions of the
gastrointestinal tract. The activity of EECs is modulated by sig-
nals from other EEC populations, as mentioned above, and from
the enteric nervous system (ENS), a network of nerve fibers and
ganglia innervating the intestine that interacts with branches of
both the parasympathetic and sympathetic nervous systems (ref.
123 and Figure 3). Signaling within the ENS involves GPCR activa-
tion and, in addition to acetylcholine and noradrenaline, utilizes
a large number of peptide neurotransmitters including calcitonin
gene-related peptide (CGRP), vasoactive intestinal peptide (VIP),
pituitary adenylate cyclase-activating protein (PACAP), galanin,
and the bombesin-related neuromedin B (NMB) and gastrin-
releasing peptide (GRP).

In isolated perfused porcine ileum, noradrenaline inhibited
GLP1 secretion, an effect that was abolished by the non-selective
a-adrenergic antagonist phentolamine. On the other hand, cho-
linergic stimulation was found to promote GLP1 secretion (124).
In accordance with this, GLP1 release from fetal rat intestinal cul-
tures was stimulated by the muscarinic receptor agonist bethane-
col (14) and was inhibited by an M1 receptor antagonist (125). In
rats, lipid-induced GLP1 secretion was also inhibited by atropine
and M1 muscarinic receptor blockade (125).

Stimulatory pathways. In vitro data obtained using fetal rat
intestinal cell cultures revealed that GLP1 secretion was stimulated
by CGRP, bombesin, and the bombesin-related GRP (14). CGRP
also increased GLP1 release in isolated perfused rat ileum (126).
The heterodimeric CGRP receptor was recently shown to be the
only neuropeptide receptor enriched in ghrelin cells. In line with its
G_-coupling, CGRP receptor activation dose-dependently stimu-
lated ghrelin secretion from primary gastric mucosal cultures (48).

In humans, GRP has been shown to stimulate the release of
multiple gut hormones including CCK and GIP (127). The bombe-
sin-related peptides, NMB and GRP, act via their respective G -
coupled receptors, BB1 and BB2 (128). BB2-deficient mice exhibit
impaired GLP1 release in response to a gastric glucose load (129).
PACAP has been reported to trigger the release of a number of gut
hormones including CCK, GLP1, and PYY (72, 130, 131). PACAP
activates three receptors, PAC1, VPACI, and VPAC2; VPAC1 and
VPAC2 are also activated by VIP (131).

Inhibitory pathways. Galanin is widely expressed in the ENS
and, along with somatostatin, is another inhibitor of EEC secre-
tion. In isolated perfused rat ileum, galanin inhibited GIP-stimu-
lated GLP1 release (132);in vitro, galanin inhibited the secretion of
several gut hormones including CCK and GLP1 (133, 134). These
findings are in line with reported effects of galanin in humans,
which include a robust inhibition of gastrointestinal motility
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together with suppression of several gut peptides including PYY
and GLP1 but not GIP (135). Galanin is likely to act via a G.-cou-
pled, pertussis-sensitive galanin receptor (134). Interestingly,
recent publications reported significantly elevated plasma galanin
levels in patients with obesity and diabetes (136, 137).

Cannabinoid receptors are expressed throughout the gastroin-
testinal tract and are predominantly found in enteric nerve fibers
(138, 139). Expression of the G.-coupled cannabinoid receptor 1
(CNRY, also referred to as CB1) is high in I cells (112) and K cells,
where it preferentially inhibits GIP over GLP1 release via a reduc-
tion in intracellular cAMP (94).

Sensing by the ENS

Sensing of the luminal milieu, mediated by EECs, is communicated
to the ENS via the paracrine action of gut hormones such as CCK
and GLP1. Using GLP1receptor-Cre (GlpIr-Cre) mice crossed with
fluorescent reporter strains, GLPIR" neuronal cell bodies were
recently identified in the ENS (140), confirming earlier immuno-
histochemistry findings (141). Subsets of enteric neurons are also
thought to express CCK1 and GLP2 receptors (142, 143) and have
additionally been found to contain Rxfp4, potentially mediating
responses to the orexigenic gut hormone INSL5 (20). Whether
these receptors are located in the same or in different individual
neurons remains to be established.

Interestingly, enteric neurons appear to be capable of sensing
nutrients directly (Figure 3). However, the fact that mucosal ENS
innervation does not extend to the gut lumen implies that enteric
neurons are predominantly exposed to absorbed nutrients and
local metabolic products. FFAR3 has been detected in submucosal
and myenteric ganglia (107) and may underlie actions of SCFAs
on enteric neuronal activity (144-146). Counterstaining with anti-
bodies against VIP revealed co-localization with FFAR3, indicat-
ing that SCFAs may be sensed by secretomotor neurons involved
in the regulation of water and electrolyte secretion (107). Enteric
neuron nutrient responsiveness has also been demonstrated for
glucose, amino acids, and fatty acids (147-149).

GPBARI1 expression was recently demonstrated in inhibi-
tory motor neurons in the myenteric plexus (150), and in light
of reports that BAs delay gastric emptying, it led the authors to
hypothesize that GPBAR1 may modulate gastrointestinal motility,
not only by mediating GLP1 release but also through direct activa-
tion of inhibitory enteric neurons.

It is, therefore, becoming increasingly apparent that EECs
must be capable of a sophisticated integration of stimulatory and
inhibitory signals from multiple sources, which in turn results in
the secretion of gut hormones that act not only centrally and via
the vagus nerve but also within the ENS. Dissecting how indi-
vidual components of this complex regulatory network influence
gut hormone secretion requires further exploration. Utilization
of ex vivo perfused intestine models or other experimental tech-
niques maintaining a polarized epithelium, such as Ussing cham-
bers, will be important.

Concluding remarks

Gut chemosensing fulfills a fundamental role in postprandial phys-
iology, orchestrating tailored multi-effector responses to ingested
nutrients. Significant progress has been made in elucidating the
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molecular mechanisms underlying nutrient-stimulated gut hor-
mone release. However, our understanding of the additional com-
plexity bestowed by neurohormonal fine-tuning of gut hormone
secretion and bidirectional communication between the entero-
endocrine system and the ENS remains poor. Nevertheless, it is
becoming increasingly clear that factors that alter gut motility, and
thus alter the delivery of nutrients and exposure of the gut to nutri-
ents, can have profound implications for gut hormone release. It
is believed that the markedly elevated levels of GLP1 and PYY
following gastric bypass surgery are linked to enhanced delivery
of nutrients to the distal intestine and underlie many of the ben-
eficial outcomes on weight loss and glycemia (1). The therapeutic
potential of gut hormones has already been established, particu-
larly with regard to GLP1 mimetics, which modulate the incretin
axis to improve glucose homeostasis. It is hoped that treatments
based on targeting endogenous secretion from EECs will have the
added benefit of releasing multiple gut hormones with effects on
both glucose control and appetite. A deeper understanding of the
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complex inner workings of the intestinal neuroendocrine network,
and how they collectively regulate postprandial physiology, might
further facilitate the exploitation of these systems and the devel-
opment of novel therapeutic strategies.
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