Supplemental Table 1

COVID-19 patients		
Groups	HIV+/aTB-	HIV+/aTB+
Ν	23	8
Age (median, IQR)	47 [42-53]	40 [33-54]
Male (%)	43.5%	37.5%
On ART (%, n)	78.3%, n=18	62.5 % *, n=5
CD4 count (cells/mm ³ , IQR)		
On ART	264 [134-359]	80 [32-184]
ART-naïve	40 [8-120]	106 [17-106]
Log ₁₀ Viral load (median, IQR)		
On ART	<1.3 [<1.3-<1.3]	3.5 [1.9-5]
ART-naïve	4.4 [2.7-4.7]	4.7 [4.2-5.3]

Supp Table 1. Clinical characteristics of HIV-infected and HIV/aTB coinfected COVID-19 participants. *: Despite reporting anti-retroviral treatment (ART) usage, it is most likely that most of the HIV+/aTB+ patients have defaulted treatment, with only one out of eight patients exhibiting an undetectable HIV-1 viral load with a CD4 count of 209 cells/mm³.

Supplemental Table 2

	SURVIVED DECEASED		P-values	
	70.5% (n=67)	29.5% (n=28)	1-001003	
Age (median, IQR)	50 [42-56]	55 [44-65]	0.029	
Male (%, n)	50.7% (n=34)	75% (n=21)	0.029	
HIV positive (%, n)	37.3% (n=25)	21.4% (n=6)	0.13	
on ART	72% (n=18)	83.3% (n=5)	0.39	
Time on ART (years, IQR)	9.5 [6-12]	10 [3.5-11]	0.75	
CD4 count (cells/mm ³ , IQR)	144 [53-332]	113 [45-270]	0.71	
Log Viral load	<1.3 [<1.3-3.75]	.3 [<1.3-3.75] 2.38 [<1.3-4.91]		
Active TB (%, n)	13.4% (n=9)	21.4% (n=6)	0.33	
Co-morbidities (%, n)				
Cardiovascular	7.5% (n=5)	7.1% (n=2)	0.96	
Hypertension	43.3% (n=29)	53.6% (n=15)	0.36	
Diabetes	34.3% (n=23)	46.4% (n=13)	0.25	
Obesity	29.8% (n=20)	35.7% (n=10)	0.57	
Other respiratory diseases	10.4% (n=7)	-	-	
SARS-CoV2 serology positive* (%, n)	67.2% (n=45)	75% (n=21)	0.45	
COI (median, IQR)	5.5 [0.25-23.3]	15.5 [0.73-39.3]	0.057	
WHO scale at enrolment (%, n)				
3	25.4% (n=17)	-	-	
4	43.3% (n=29)	10.7% (n=3)	0.002	
5	22.4% (n=15)	46.4% (n=13)	0.019	
6	8.9 % (n=6)	39.2% (n=11)	0.0004	
7	-	3.6% (n=1)	-	
Severe: WHO ≥5 (%, n)	31.3% (n=21)	89.3% (n=25)	<0.0001	
Cycle threshold value SARS PCR** (IQR)	30.6 [24.8-33.9]	29.1 [25.3-34.2]	0.83	
CRP (mg/L, IQR, n)	66 [31-136] (n=67)	129 [58-222] (n=28)	0.015	
D-dimer (µg/mL, IQR, n)	0.54 [0.32-0.98] (n=63)	0.85 [0.59-2.0] (n=27)	0.015	
LDH (U/L)	385 [313-513] (n=66)	543 [387-689] (n=27)	0.0009	
Ferritin (ng/mL, IQR, n)	921 [512-1581] (n=96)	1719 [1031-2279] (n=28)	0.002	
White cell count (x10 ⁹ /L, IQR, n)	8.9 [6.3-12.2] (n=67)	11.9 [9.0-16.6] (n=28)	0.005	
Unaffected lung (%, IQR, n)	40% [20-70] (n=59)	20% [0-40] (n=27)	<0.0001	
On steroid treatment (%, n)	73.1% (n=49)	92.9% (n=26)	0.032	
Days in hospital (%, IQR)	11 [6-23]	15 [7-22]	0.54	

Supp Table 2. Clinical characteristics of COVID-19 patients who survived or died.

*: SARS-CoV-2 serology was performed using the Roche Elecsys assay, measuring SARS-CoV-2 nucleocapsid-specific antibodies. **: SARS-CoV-2 polymerase chain reaction (PCR) was performed using the Allplex[™] 2019-nCoV Assay manufactured by Seegene.

Medians are reported and numbers in brackets correspond to interquartile range [IQR]. ART: antiretroviral treatment, COI: Cut-off index of Roche Elecsys assay, CRP: C-Reactive protein, LDH: lactate dehydrogenase.

Supplemental Table 3

Groups	HIV-/aTB-	HIV+/aTB-	HIV-/aTB+	HIV+/aTB+
N	24	30	32	36
Age (median, IQR)	33 [28-43]	34 [32-41]	34 [32-42]	37 [32-45]
Male (%)	58.3%	23.3%	50%	66.7%
CD4 count (cells/mm ³ , IQR)	nd	481 [358-700]	nd	268 [141 - 400]
Log ₁₀ Viral load (median, IQR)	na	<1.3 [<1.3-4.18]	na	4.59 [2.19-5.00]
On ART (%)	na	80.6 %	na	38.9%

Supp Table 3. Clinical characteristics of 2018 case-control cohort.

ART: anti-retroviral treatment. nd: not done, na: not applicable.

Supplemental Figure 1

Supp Figure 1. Magnitude of SARS-CoV-2-specific serological response (defined using the Roche Elecsys® assay) in COVID-19 patients (n=94) stratified according to WHO ordinal score and outcome. Statistical comparisons were defined using a Kruskal-Wallis test, adjusted for multiple comparisons (Dunn's test) for the different WHO groups and the Mann-Whitney test to compare COVID-19 patients who survived or died. The plain horizontal line depicts the positivity cut-off as defined by manufacturer.

Supp Figure 2. (A) Association between the magnitude of SARS-CoV-2-specific serological response (defined using the Roche Elecsys® assay) and the frequency of SARS-CoV-2 CD4 T cells in COVID-19 patients. Correlation was tested by a two-tailed non-parametric Spearman rank test. (B) Comparison of frequency of IFNγ-, TNF α -, and IL2- in producing SARS-CoV-2-reactive CD4 T cells in acute COVID-19 cases (red) and hospitalized SARS-CoV-2-uninfected patients (blue). Only SARS-CoV-2 responders are depicted. (C) Comparison of the memory (left) and activation (right) profile of SARS-CoV-2-specific CD4 T cells between acute COVID-19 cases (red) and convalescent patients (green). Statistical comparisons were calculated using the non-parametric Mann-Whitney test. (D) Non-supervised two-way hierarchical cluster analysis (Ward method) of eight functional or phenotypic attributes of SARS-CoV-2-specific CD4 T cells (the proportion of IFNγ+TNF α +IL2+, IFNγ-TNF α +IL2+ IFNγ-TNF α +IL2- and cells, the proportion of ED, and GrB, HLA-DR, CD38 and Ki67 expression). COVID-19 status and outcome for each patient is indicated at the top of the dendrogram.

Supplemental Figure 3

Supp Figure 3. Clinical characteristics and phenotype of SARS-CoV-2-specific CD4 T cells in COVID-19 patients, grouped according to their HIV and TB status. (A) Comparison of the age of COVID-19 patients based on their HIV and TB status. (B) Comparison of the frequency of total CD4 T cells based on patient's' HIV and TB status. Statistical comparisons were performed using a Kruskal-Wallis test, adjusted for multiple comparisons (Dunn's test). (C) Memory and activation profile of SARS-CoV-2-specific CD4 T cells in COVID-19 cases, stratified by HIV and/or aTB co-infection. ED: Early differentiated (CD45RA-CD27+). The phenotype of SARS-CoV-2-specific CD4 T cells was assessed only on response with at least 20 events.

Supplemental Figure 4

Supp Figure 4. Comparison of the memory differentiation (A) and activation (B) profile of SARS-CoV-2- and Mtb-specific CD4 T cells in hospitalized COVID-19 and non-COVID-19 patients. Statistical comparisons were performed using a Kruskal-Wallis test, adjusted for multiple comparisons (Dunn's test). ****: p < 0.0001, ***: p = 0.0001. Naïve (CD45RA+CD27+), ED: early differentiated (CD45RA-CD27+), LD: late differentiated (CD45RA-CD27-), Eff: Effector (CD45RA+CD27-).

Complete list of HIATUS consortium members (alphabetical order):

- 1. Fatimah Abrahams, University of Cape Town
- 2. Saalikha Aziz, University of Cape Town
- 3. Nonzwakazi Bangani, University of Cape Town
- 4. John Black, Livingstone Hospital, Port Elizabeth
- 5. Melissa Blumenthal, University of Cape Town
- 6. Marise Bremer, University of Cape Town
- 7. Wendy Burgers, University of Cape Town
- 8. Maddalena Cerrone, University of Cape Town, Imperial College London and Francis Crick Institute
- 9. Zandile Ciko, University of Cape Town
- 10. Anna K Coussens, University of Cape Town and Walter and Eliza Hall Institute of Medical Research, and University of Melbourne
- 11. Remy Daroowala, Imperial College London and University of Cape Town
- 12. Angharad G Davis, Francis Crick Institute, University of Cape Town and University College London
- 13. Jantina de Vries, University of Cape Town
- 14. Elsa du Bruyn, University of Cape Town
- 15. Hanif G Esmail, University College London and University of Cape Town
- 16. Rene T Goliath, University of Cape Town
- 17. Siamon Gordon, University of Oxford
- 18. Yolande XR Harley, University of Cape Town
- 19. Amanda Jackson, University of Cape Town
- 20. Rachel P-J Lai, Imperial College London and Francis Crick Institute, London
- 21. Francisco Lakay, University of Cape Town
- 22. Fernando-Oneissi Martinez-Estrada, University of Surrey
- 23. Graeme Meintjes, University of Cape Town
- 24. Marc S Mendelson, University of Cape Town
- 25. Ntobeko Ntusi, University of Cape Town
- 26. Tari Papavarnavas, University of Cape Town
- 27. Alize Proust, Francis Crick Institute, London
- 28. Catherine Riou, University of Cape Town
- 29. Sheena Ruzive, University of Cape Town
- 30. Qonita Said-Hartley, University of Cape Town
- 31. Georgia Schafer, International Centre for Genetic Engineering and Biotechnology, Cape Town
- 32. Keboile Serole, University of Cape Town
- 33. Cari Stek, Imperial College London and University of Cape Town
- 34. Nicki Tiffin, University of Cape Town
- 35. Sean Wasserman, University of Cape Town
- 36. Claire Whitaker, University of Cape Town
- 37. Katalin A Wilkinson, Francis Crick Institute and University of Cape Town
- 38. Robert J Wilkinson, University of Cape Town, Imperial College London and Francis Crick Institute
- 39. Kennedy Zvinairo, University of Cape Town